Step of Proof: select_nth_tl
11,40
postcript
pdf
Inference at
*
2
1
1
I
of proof for Lemma
select
nth
tl
:
1.
T
: Type
2.
T
List
3.
u
:
T
4.
v
:
T
List
5.
n
:{0...||
v
||},
i
:{0..(||
v
|| -
n
)
}. nth_tl(
n
;
v
)[
i
] =
v
[(
i
+
n
)]
6.
n
: {0...||
v
||+1}
7.
i
: {0..((||
v
||+1) -
n
)
}
8.
n
0
9.
n
= 0
[
u
/
v
][
i
] = [
u
/
v
][(
i
+
n
)]
latex
by
InteriorProof
((RWO "9" 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 2:n
CollapseTHEN ((Aut
),(first_nat 3:n)) (first_tok SupInf:t) inil_term)))
latex
C
.
Definitions
P
Q
,
P
Q
,
P
Q
,
,
True
,
T
,
P
&
Q
,
t
T
,
False
,
A
,
A
B
,
{
i
..
j
}
,
x
:
A
.
B
(
x
)
Lemmas
add
functionality
wrt
eq
,
le
wf
,
squash
wf
,
non
neg
length
,
length
cons
,
length
wf1
,
select
wf
origin